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Abstract 

We present a new form of the multi-boson reduction of KP hierarchy with Lax operator written in terms of boson 
fields abelianizing the second Hamiltonian structure. This extends the classical Miura transformation and the Kupershmidt- 
Wilson theorem from the (m)KdV to the KP case. A remarkable relationship is uncovered between the higher Hamiltonian 
structures and the corresponding Miura transformations of KP hierarchy, on one hand, and the discrete integrable models 
living on refinements of the original lattice connected with the underlying multi-matrix models, on the other hand. For the 
second KP Hamiltonian structure, worked out in details, this amounts to finding a series of representations of the nonlinear 
~ r  algebra in terms of arbitrary finite number of canonical pairs of free fields. 

1. Introduct ion 

Multi-boson Kadomtsev-Petviashvili (KP) hierarchies are integrable systems of a very unique structure. Since 
their appearance as generalizations of two- and four-boson KP hierarchies [ 1-6] in the context of the matrix 
models of strings [7-10]  several of their intriguing properties have been revealed and studied. 

Multi-boson KP hierarchies are consistent Poisson  reduct ions  of the standard full (infinitely-many-field) 
KP hierarchy within the R-matrix scheme [ 11], Let us note, that within the Lax formulation of integrable 
Hamiltonian systems, restrictions of the pertinent Lax operator to a submanifold do no t  necessarily lead to 
consistent restrictions of the corresponding Poisson structures [12]. Thus, the proof of consistency of the 
Poisson reductions is a necessary step in the construction of multi-boson KP hierarchies. In Ref.[ 11 ] the first 
KP Hamiltonian structure was formulated in terms of Darboux-Poisson coordinate pairs, i.e., canonical pairs of 
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free fields. This resulted in a series of  representations of  Wl+o~ algebra made out of  arbitrary even number of  
free boson fields. 

In this letter we first present a new formulation of  the multi-boson reduction of  KP hierarchy in terms of  
a different set of  boson fields abelianizing the second Hamiltonian structure. This extends the classical Miura 
transformation and the Kupershmidt-Wilson theorem [13] from the mKdV (modified Korteweg-de Vries)  to 
the KP case. Within the KP context, it is a generalization of  the Miura mapping between linear and quadratic 
two-boson KP hierarchies [ 17] to arbitrary multi-boson KP hierarchies. 

One of  the unique features of  multi-boson KP hierarchies is their connection to the Toda lattices originating 
from the mult i-matrix models  [7,8],  and the corresponding invariance under discrete symmetries [14 -16] .  
The discrete symmetries,  being implemented by a similarity transformation of  the Lax operator, are canonical 
transformations leaving all the Hamiltonian structures form-invariant [16].  

In this letter we next exhibit a remarkable relationship between the higher Hamiltonian structures and the 
corresponding Miura transformations of  KP hierarchy, on one hand, and the discrete Toda-like integrable models  
living on refinements of  the original lattice connected with the underlying multi-matrix models, on the other 
hand. We show that the connection with the lattice integrable models can be used to completely characterize 
the higher KP Hamiltonian structures in terms of  the Darboux-Poisson canonical pairs of  free fields. As is 
here explained, there exists an explicit  and simple link between a set of  sub-lattice (refined-lattice) spectral 
equations and the Lax operators of  the multi-boson KP hierarchies expressed in terms of  Poisson-abelian fields 
with respect to the given Hamiltonian structure. The fact, that the KP Hamiltonian structures turn out to be 
correlated with the lattice spacing of  the corresponding discrete integrable systems, points to the relevance of  
the notion of  the discrete lattice formulation for the discussion of  the origin of  the mult i-hamiltonian structures 
in continuum integrable models. 

Among other results we are obtaining here, is a generalization of  the two-boson realization of  the nonlinear, 
(i.e., non-Lie)  "~¢~ algebra [18] to a series of  W ~  representations in terms of  arbitrary even number of  
ordinary free bosonic fields 6. The latter algebra plays an important r61e as a "hidden" symmetry algebra in 
str ing-theory-inspired models with black hole solutions [18].  

2. Some known basic resul ts  on reduced  K P  hierarchies 

To set the scene we start with a brief  recapitulation of  some basic properties of  the two-boson KP hierarchy, 
as well as of  mult i -boson KP hierarchies w.r.t, the first Hamiltonian structure, emphasizing features relevant for 
the present work. 

2.1. Two-boson K P  hierarchy 

We first consider truncated elements of  KP hierarchy of  the type Lab = D + a (D - b ) - ~ ,  where D = c)/Ox 

and where we have introduced two Bose currents ( a , b )  [5] .  The Lax operator can be cast in the standard 
O43 

form L~#, = D + ~n---o w n D - l - n  with coefficients wn = ( - 1 ) n a ( D  - b)" - 1 written in terms of  the Fail di 

Bruno polynomials .  A calculation of  the Poisson bracket structures using definitions 7 : 

{ (LI x ) ,  (LI Y) = - (LI IX, YI) (1) 

6 These representations of ~ ' ~  are not equivalent to the representations proposed in 119] which were constructed in terms of odd number 
of scalar fields with alternating signatures. 
7 Here and below the following notations are used. T r  A Z ~-  f dx ResZ = f dx Z_ l (x) is the Adler trace for arbitrary pseudo-differential 
operator Z = ~-~_>_~ Zk(x)D k , and the subscripts -- in Zhz denote taking the purely differential or the purely pseudo-differential part 

of Z, respectively. 
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{ ( L I X ) , ( L [ Y ) } 2 = T r A ( ( L X ) + L Y - ( X L ) + Y L ) +  f d x R e s ( [ L , X ] ) O - ' R e s ( [ L , Y ]  ) (2) 

yields the first bracket structure of  the two-boson (a,  b) system to be given by { a ( x ) ,  b ( y )  }l = - 8 ~ ( x  - Y) 
and zero otherwise. This leads the coefficients wn of Lab tO satisfy Poisson-bracket structure of  the linear W I + ~  
algebra type. The second bracket structure (2) takes in this case the form: 

{ a ( x ) ,  b (y )  }2 = - b (  x ) 6 '  ( x  - y )  - tS" ( x  - y )  

{ a ( x )  , a ( y ) } 2  = - 2 a ( x ) 6 ' ( x  - y )  - a ' ( x ) 8 ( x  - y )  (3) 

{ b ( x ) ,  b (y)}2  = - 2  8 ' ( x  - y) 

and based on this bracket w. satisfy the 1~/~ algebra. 
The above two-boson hierarchy is gauge-equivalent to the model based on the pseudo-differential operator 

[4]:  

Lce=  ( D  - e)  ( D  - c)  ( D  - e - c) -1 = D + (e'  + ec)  ( D  - e - c)  - I  (4) 

The Miura-like connection between these hierarchies generalizes the usual Miura transformation between one- 
bose KdV and mKdV structures and takes a form [ 17]: 

a = e t  + e c ,  b = e + c  (5)  

This Miura transformation can easily be seen to abelianize the second bracket (3) ,  meaning that 

{ e (x)  , c (y)  }2 = - 8 ' ( x -  y) (6) 

and a, b as given by (5) satisfy (3) by construction. 
The above structures naturally appear in connection with the Toda and Volterra lattice hierarchies [20].  

Consider namely the spectral equation (here 8 =-- 8/8t1,~ where tl,l denotes the first evolution parameter):  

oqrn = qzn+l + ao(n)qrn  (7) 

Aqrn = qrn+l + a o ( n ) ~ n  + a l ( n ) q r n - 1  (8) 

We can cast (8) in the form Aqrn = L~l)qr. with L}, 1) - O + a l (n )  (O - ao(n - 1)) -1. Connection to the 
continuous hierarchy is now established by setting a l ( n )  = a and a o ( n -  1) = b. The Miura transformed 
hierarchy described by (4) can be associated with "square-root" lattice of  the original Toda lattice system of 
(8) :  

A1/2 ~ n + l / 2  = ~Irn+l "}- "An+lXIrn, •1/2 xld, n = ~ n + l / 2  -1- /3n~rn-1/2 (9) 

which defines the Volterra chain equations [20].  Also (9) can be cast into A'Irn = LC~l)qr. form with 

L~ ( ')  = (0 - ..4.) (0 - B . _ , )  (O - / 3 n - 1  --  ,An) -1 ( 1 0 )  

which upon identification .An = e, /3.-1 = c agrees with (4).  Furthermore using one of the Volterra equations 
a.A. = .An(/3. - / 3 . - ~ )  we can rewrite (10) as 

L ~n l) = (0 - .An) (0 - / 3 n  - .An)-1  (0 - / 3 . )  = 0 +/3n (c9 - / 3 n  - .An) -1 .An ( l l )  

which upon identification /3. = j ,  .A. = j takes the form L = D + 3 (D - j - 3 ) -~ J in which the so-called 
quadratic two-boson KP hierarchy appeared in connection with S L ( 2 , 1 ~ ) / U ( 1 )  coset model [4].  

The above two simple 2-boson models will be generalized in the next two sections to the arbitrary multi-boson 
KP hierarchies. 
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2.2. Multi-boson KP hierarchy." the first bracket 

Let us now write the generalization of the two-boson Lax L,,b to the arbitrary 2M-field Lax operator [9] : 

/=1 

-1  
(12) 

The main result of the investigation presented in [ 11 ] is contained in the following: 

The 2M-field Lax operators (12) are consistent Poisson reductions of the full KP Lax operator Proposition. 
for any M= 1,2,3 . . . . .  

The proof was based on the recursive formula valid for arbitrary M = 2, 3 . . . .  

LM -~ LM(a,b) ~ LM ( a l , b l ; . . . ; a u ,  bM) 

LM = e f  bM[bM + (aM -- a M - 1 ) D - I  + DLM_,D-']e- f ,,M (13) 

which describes the 2M-field Lax operators in terms of the boson fields (ar, br)rM=l spanning Heisenberg 
Poisson bracket algebra: 

{ar(X), bs(y)}p, = --6rsC)x(~(X - -  y) (14) 

In other words, we proved that the first Poisson bracket structure for LM from (12) is given by 

{(cMIx), (cM I r)}p, =-(LM I IX, Y]) (15) 

where X, Y are arbitrary fixed elements of the algebra of pseudo-differential operators and ('l ') = Tra( . . )  
indicates the Adler bilinear pairing. The subscript P '  in (15) indicates that the constituents of LM (a, b) satisfy 
(14). 

As a result of (13) the coefficient fields of the Lax operator (12) satisfy themselves the recursion relations 

A(MM)=aM, B~M)=bM, B}M)=bM+B} M-') ( l = 1 , 2  . . . . .  M - l )  (16) 

A}M)= (3 + BI M-1))A} M-') , A} M)=A~M_I-') + (O + B~ M-'))A~ u-l) ( l : 2  . . . . .  M - l )  

These recursion relations can be easily solved in terms of the free fields (at ,  br)r~l from (14) to yield 

M 

B~ M) = ~ bs, A~ M) =aM 
s=l 

M--1 n3-1n2--1 

A(M) 
M-r=  

nr=r n2=2 nl=l 

(17) 

(18) 

3. Multi-boson KP hierarchy: the second bracket 

3.1. Generalized Miura transformation for multi-boson KP hierarchies 

The generalized Miura transformation for multi-boson KP hierarchies, which we are going to construct in 
this section, can be viewed as "abelianization" of the second KP Hamiltonian structure (2), i.e., expressing the 
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coefficient fields of the pertinent KP Lax operator in terms of canonical pairs of "Darboux" fields. The explicit 
construction relies on the following recurrence relation for multi-boson KP Lax operators: 

LM =-- LM(c,e)  ~ LM ( c l , e l ; . . . ; c M ,  eM) 

LM = e f  cM (D + CM -- eM) LM-1 (D - eM) -1 e-  f cM (19) 

M = l , 2  . . . .  Lo=_D 

{ck(x) ,  et (y)}  = - 6 k t 3 x 6 ( x - y ) ,  k , l=  1,2 . . . . .  M (20) 

As will be shown below, the pairs (Cr, er)Ml are the "Darboux" canonical pairs for the second KP bracket for 
arbitrary M. This defines a sequence of the multi-boson KP Lax operators in terms of the Darboux-Poisson 
pairs with respect to the second bracket, very much like (13) defined a similar sequence of Lax operators in 
terms of the Darboux-Poisson pairs with respect to the first bracket. 

Eq. (19) implies the following recurrence relations for the coefficient fields of (12): 

B~ M' = B~ M-I~ + cM 1 < k < M -  l, B(M M' =CM + eM 

1 -~ C9 -~ ~1 + CM A(M-I) 

= ( ) A(M-1) • .~a(M) A~_Mll)+ cg+B~M--I)+CM--eM "'k ' 2 < k < M - - 1  

ACM M) = A(MM_I 1) + (0 + CM) eM 

(21) 

(22) 

(23) 

(24) 

(1) Example - 2-boson KP: 

L l = e f C ' ( D + c l - e l ) D ( D - e l ) - l e - f  cl D + A ( l l ) ( D  B}I)) - '  = - ( 2 5 )  

A l l ) = ( O + c l ) e l ,  B l l ) = c l  + e l  (26) 

Here we recognize the structure of the two-boson hierarchy from (4) as well the generalized Miura map (5). 

(2) Example - 4-boson KP: 

L2 = e f  c" (D + c 2 -  e2)[D + Al l) (D - BI1) )  -1 ] (D - e2) -1 e -  it2 

= D + ~.~ D - t  ~1-1 +"1  D-B(22) -~ (27) 

A(22) = AI j) + ~ ~ + c2) e2 = (0 + cl) el + (c~ +c2)  e2 (28) 

a12)= (a + BI 1) + c 2 -  ee) AI 1)= (0 + el + cl + c 2 -  e2) (a  + Cl)el (29) 

B~ 2 ~ = c 2 + e 2 ,  BI 2 )=BI  ' ) + c 2 = e , + c , + c 2  (30) 

where A I 1) and B I 1) are substituted with their expressions from (26). It is easy to derive a second bracket struc- 
ture for the above fields directly from (20). A simple calculation gives {B~2)(x),B~22)(y) } = 
{ BI 2) (x) ,  BI 2~(y) } = -2ax6(x  - y),  ( B~ 2)(x) ,  B~ 2~(y) } = -Ox6(X - y) etc. thus reproducing the re- 
sult of [ 10] based on Lenard relations. 
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directly in terms of the building 

1( 
LM = (D - e M )  1 - I  D 

k=M- 1 

or, equivalently, in a "dressing" 
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we can obtain closed expressions for the arbitrary Lax LM for M = 1,2 . . . .  
blocks ( Cr , er ) rMl : 

ct M , ,  
- e k  - D - / ~  D - - 

l=k+l l=l k=l 

form 

LM = blMLtM_l ...Ltl D V~ -1 . . .  V~41_l V~t 1 

Ltk -- (D - ek) e fck , );k -- e fc t  (D - e~) 

The recurrence relations (21) - (24)  can be explicitly solved in terms of the Darboux fields: 

(31) 

(32) 

(33) 

M M 

B~ M ) = e k + ~ c l ,  1 < k < M  A M M ) = Z ( O + c k ) e k  (34) 
l=k k=l 

A ( k M ) = Z  0+e,1k--e"k+M--k+ Z % 0+e ,1k- ' - - e ,1~- l+M-l -~+  Z cl~_, x . . .  
,1k=l lk=nk ,1~-1=1 lk-t =,1k--I 

n3 n2 

x~(O+en2-e ,12+l+C,12+c,12+l)  Z ( O + c , 1 , ) e , 1 , ,  k = l  . . . . .  M - 1  (35) 
,12=1 ,11=1 

The Miura-transformed form of LM reads explicitly: 

o<5 

LM = D + Z Uk[(c,e)]  ( x )D  -k 
k=l 

M 
p(1) 

Uk[ (c , e ) ] ( x )  = ,  ~-1 (eM +CM) Z (0 +ct)  el 
/=1 

(36) 

m i n ( M -  l , k -  1) M 

+ Z A M _ r ( C , e )  n (r+l )  I rk_l_r~eM q- CM,eM-1 ÷ CM-1 + CM . . . . .  eM--r + ~ Clj ) (37) V" 
r=l l=M-r 

where AM-r(C, e) are the same as in (35), and p ( N )  denote the (multiple) Fail di Bruno polynomials [ 11 ]: 

P~N)(BN,BN-1 . . . . .  BI) = ~ ( - O  + B1)ml " " ( - O - k -  BN)mU " l 
mlW,,,+mN=n 

(38) 

Now, upon substitution of (36) - (37)  into (2),  we obtain a series of explicit (Poisson bracket) realizations 
of the nonlinear "¢¢~ algebra in terms of 2M bosonic fields, satisfying (20), for any M = 1,2 . . . . .  

3.2. Consistency of  multi-boson KP Poisson reduction w.r.t, the second bracket 

The main result of this paper follows from the following general statement (analogue of the Kupershmidt- 
Wilson theorem for mKdV [ 13] ). 
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Proposition. Let (Cr, er)rM=l obey the Heisenberg Poisson algebra (20). Then the reduced Lax operators LM 
(32) (or (36)-(37)) satisfy the second KP Hamiltonian structure (2). 
Proof It proceeds by induction w.r.t.M. The case M = 1 is the familiar example of two-boson KP hierarchy. 
Substituting according to (32) - (33)  LM =~[MLM--1])M 1 into (2) we have 

{ (LMI 
={ 
+{ 
+{ 

X), (LMI Y} } 
(LM-,I W;tlXUM), (LM-,I v~tlyHM) } (39) 

(UMI LM-1I)MIX), (LIMI LM-,V~'Y) } + { (V~' I XCtMLM_,), (v,~ll YHMLM-,)} (40) 

(IAMI LM_,V[4'N), (V~'[ YI.,IMLM_I) } + { (V2uII xIAMLM_,), (Z4MI LM_,V2u'Y) } (41) 

In all terms (39) - (41)  in the r.h.s, of the above equation it is understood that the Poisson brackets are taken 
w.r.t, the left members in the angle brackets. Henceforth, for simplicity, we shall skip the subscripts M of 
H, V, c, e.  Using the induction hypothesis and simple identities for pseudo-differential operators, the bracket 
(39) takes the form 

=TrA ((LM-lV-IXLt)+ LM-IW-IYLI - (V-IXLILM-1)+~)-iYLILM-I) (39) 

, W-1YLt]) (42) 

(43) 

(V -1 ( X L M )  + ]))_ O- )-1 (YLM) + ]))+] (44) 

+Id. Res([LM_,.V-'XU])O-'Res(ELM-, 
= TrA ((CMX)+ CMY- (XLM)+ ~M) 

- TrA [ ( H - '  (LMX) + H)_ (H-'(LMY)+ 1.4)+ - 

The following identities, valid for arbitrary pseudo-differential operator Z and arbitrary function f ,  will be used 
in the sequel 

I, 

Res (Z - U-1ZW) = 3xRes ( ( n  - e - c ) - '  Z) (46) 

where the last sub/superscripts indicate taking the zero-order (c-number) part of the corresponding right- 
ordered s pseudo-differential operator. Using (46) the term (45) can be rewritten in the form 

,.) 

+ f d x O x { R o s ( ( D - e - c ) - '  X L M - ( D - e ) - '  LMX)} 

x Res ( (D - e - c) -I  YLM -- (D - e) -1LMY) (47) 

8 That means, the coefficient functions are to the fight w.r.t, differential operators D. 
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Similarly, taking into account (46), the trace term (44) takes the form 

J'dxOx {Res ((D - e) -1LMX)} Res ((D - e) -1 LMY) (44) 

- - / d x O x  {Res ((D - e - c) -1XLM)} Res ((D - e - c) -I YLM) (48) 

Finally, using the Heisenberg Poisson algebra (20) lbr (cM, eM), (part of assumption in the Proposition), and 
using again (46), the sum of the terms (40) and (41) reads 

( 4 0 ) + ( 4 1 ) =  f dx [ O x { R e s ( ( D - e ) - I L M X ) } - R e s ( [ L M , X ] )  1 

x R e s ( ( D - e - c )  - I Y L M - ( D - e ) - ' L M Y ) -  (X~  , Y )  (49) 

Thus, collecting the results (43), (47), (49) and (48), we achieve precise cancellation of the unwanted 
terms leaving us with the desired result: 

{(LM[ X) , (LM[ Y ) } =  TrA ( ( LMX)+ LMY -- (XLM)+ YLM) + a [ dxRes([  LM , X ] )0 - IRes ( [  LM , Y]) 

4. The sub-lattices and abelianization of  higher brackets 

In this section the recurrence relations presented above will be traced back to the lattice formulation based on 
the discrete spectral equations. We start by providing link between lattice formulation and recurrence relation 
in [ 11 ] amounting to abelianization of the first KP bracket. 

We start with the spectral equation 

,Axis,, = L(N)Xltn Vn (50) 

where 

N 
1 1 L (N) 

2--'a/'(n) O - ao(n - k) "'" O - ao(n - 1) 
O + (51) 

k= l  

Multiplying L(~ N) on both sides by 1 = efa°("-~)e-f .oo,-n) we arrive at 

L(~ N~ = e f  ~°(n-l) {ao(n - 1 ) + al (n)O-l O (52) 

+ + a k ( n ) , 9 + a o ( n _ l ) _ a o ( n _ k ) . . . c ) + a o ( n _ l ) _ a o ( n _ 2 ) O -  e 
" k=2  

Recalling the Toda equation of motion, which is a consistency condition following from (7) and (50): 

(0 + a o ( n  - k )  - a o ( n -  - l )  l , a  . . . . .  ( 5 3 )  at(n) ~ a k ( n  1) + I 

and the simple identity 

1 
[aa~_l(n-  1) - a k - 1 ( n -  1) ( a o ( n -  1) - a o ( n -  k))] 

O + a o ( n - l ) - a o ( n - k )  
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= 0 ( a k - l ( n - -  1) 
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, ) 
O + a o ( n - 1 ) - a o ( n - k )  - - a k - l ( n - - l )  (54) 

we find 

L(,, o) = e f  ~°('~-1) {a0(n - 1) + a l ( n ) O  -1 (55) 

1 1 
+ [ a N ( n -  1) - a l ( n -  1)]3  -1 

O + a o ( n - 1 ) - a o ( n - N ) ' " O + a o ( n - 1 ) - a o ( n - 2 )  

U--l~ al (n  -- 1 ) I . . .  i ]O_l ; + 0 [o + 
c ) + a o ( n - 1 ) - a o ( n - l - l )  O + a o ( n - l ) - a o ( n - 2 )  J 1=1 

× e -  fao(n-1) 

This connects lattice formulation to recurrence relation (13) [ 11 ]. To see it more clearly recall now expression 
( 1 2 )  for the continuous Lax operator. Comparing with ( 5 1 )  we see the following correspondence: 

A(N) ,~, ak(N);  a(N) n(N)  . ~ a o ( N  - k) k = 1 . . . .  N (56) N - k + l  "*N = aN ~ a l (N) ;  D N _ k +  1 , 

where we put n = N. It is now obvious that the lattice Toda equation of motion (53) corresponds to the 
recurrence relation (16): 

A}N)=A}N~ - 1 ) +  ( 0 + B }  N - l ) ) a }  N- l )  ( / = 2  . . . . .  N - l )  (57) 

with B ~ N) = b M + B ~ N- l ) ,  ~N~(N) = bN "~ a 0 ( N -  1 ) and the further correspondence B} N- l )  ,--, ao ( l - 1 ) - ao ( n - 1 ) 
established by comparing (12) with (55). 

Therefore we have established relation between the lattice system with the Toda equation (53) relating 
functions on different sites and corresponding continuous system with recurrence relations relating different 
orders of reduction of KP. 

We now discuss a link between "square-root" lattice formulation and recurrence relation (19). We define 

(58) 

qtn+l = (0 B (°/ - a(°) "~ - - n  "~n+l ] a'Ifn 

(59) 

spectral equation: 

N 
41/2 Xltn+l/2 ---- Xtrn+l t ,/-tn+l'le n q- /_._a " ~ n - p + l  I n - p  

p=l 

/~1/2 a,~t n = ~ n + l / 2  + B(O)~n--1/2 

We also have time evolution equations: 

* . + , / 2  = (o - <o> _ A?>)  * . - , / 2 ;  

We therefore find 

(60) 

and 

( . ) (p) _ a ( 0 )  a -1  _ N(0) Xlrn A1/2 ~ n + l / 2  = (.9 N (0) "{- ~ A n _ p +  1 ( 0  --  13 (0) " ' "  ( 0  _ A ( O ) ) - 1  --  --n n - p  ¢~'n-p+l j ~ n - I  
p=l 

(61 

a 1/2 aI* n ---- (O -- ,A(n 0)) ~rn_l/2 (62) 
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from the last two relations we find 

/~alr n . . . . . .  ((9 .,4 (0)) (9 ~n-lt~(O) q-L...~-'~4(l')n-P((9 ~n-p~(O) _ 1 "A(°) ~ - l n - p ,  , , , ((9 _/.q(O)~n_2 "An-l)(0)-l 

p=l 

x ((9 - r~(°) - .,4~ °) ) - l q G  (63) 

This defines a Lax operator through ,~qG = L, (N+I)T,  where 

L(N+,) F B '°' ( A~o) (0))  L~N, ((9 _ .A(O))- '  e -  f ts:,°)-' = e a  ,,-, 3 -  + B . _  1 (64) 

and 

N 

L ( V "  (p) + Fq(0) _ /,~(0) l --  ``4(0) ] - l  . .  ((9 + r)(0) Io(0) _ A ( 0 )  ) - 1  __,N) = (9 .at_ /_..¢.An_p ( (9 ~n-1  - n - p -  n - p ,  " 1"9,-1 - IDn-2 ~ , - 1  
p=l 

(65) 

/~i/2 di)n = (it)n+ 1 q_ Vnd/)n_l (66) 

where we introduced a compact notation intrinsic for the square-lattice system through Vz. =/3,,, ½. -1  = A .  

and (P2n = ~ . .  (I)2,-1 = qr.-1/2. It turns out that the process of  "refinement" of  the lattice can be continued. 
We associate the following spectral system: 

"A1/4 @ n + l / 2  = di)n+l --  Wnf])n; ,~1/4 di)n = @ n + l / 2  -J- W n ~ n - I / 2  (67) 

to the "one-quarter" lattice. In (67) we have introduced the new object W. which can be expressed through 
square-lattice components as W2. =/3. ,  W2n-1 = O~n. Combining two equations of  (67) one gets again equation 
(66) with V. = - W . W . - 1 .  Recalling the Volterra equation (gV. = V. (V.+l - V._I ) we find the evolution equation 
for W.-field to be (gW. = W2(W.+I  - W . - I  ) or in components 

2 0 R .  a n  ( 13n /3n _ 1 ) ; (9/3. 2 = - -  = / 3 . ( a . + l  - - a . )  (68) 

Relation V. = - W . W . _ I  translates in components to 

= "" B. = - f l . a .  (69) A .  - a . f l .  + - - ,  

which identifies the new hierarchy, connected with the "1/4"-lattice, with the so-called derivative Non-Linear 
Schr6dinger (dNLS) hierarchy [15].  In [ 15] it was in fact shown that for the fields of  dNLS hierarchy 
a .  = - q ,  f l ,  = - r  - qt /q2 the third Poisson bracket structure 

{ q ( x ) , r ( y ) } 3  = 6 ' ( x  -- y )  (70) 

takes an abelian form. 

establishing one to one correspondence with the recurrence relation (19).  
We now introduce notion of  "1 /4"  lattice, which is a further sub-lattice of  the "square-root" lattice associated 

to the Volterra hierarchy. Let us first rewrite (9) in a compact notation as 
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The theory o f  integrable  lattice systems has a profound geometr ical  foundat ion and found recent ly new 

impor tant  physical  applications.  A m o n g  other results obtained in this paper, we have used the Toda latt ice 

system and the related discrete integrable systems, l iv ing on its sub-lattices, to "coord ina t ize"  the con t inuum 

mul t i -boson  KP hierarchies and their Hamil tonian  structures. It was shown how KP Miura  t ransformat ions  are 

related to the under ly ing  lattice structures and how transition to the "finer" sub-lat t ice provides  the r ight  set 

o f  abelian field coordinates  for the higher  KP Hamil tonian  structures. In v iew of  the s ignif icance o f  h igher  

Hami l ton ian  structures for the not ion o f  integrabil i ty this emphasizes  the need of  a general  approach to results 

we have obta ined in this paper. A comple te ly  systematic  theory should not only ful ly explain the l ink be tween 

the various latt ice integrable systems and the h igher  Hamil tonian  structures, but should also address the relat ion 

be tween  the Toda  latt ice Poisson brackets (wi th  discrete indices)  and field-theoretical  Poisson brackets in 

cont inuum w.r.t, the first lattice evolut ion  parameter. We plan to address these interest ing issues in the future. 

In addi t ion we hope that the established connect ion  between the higher  Hamil tonian  structures and the 

pert inent  Miura  t ransformat ions  o f  KP hierarchy, on one  hand, and the discrete Toda- l ike  integrable models  on 

refined lattices, on the other  hand, will  also al low to make  further progress  in unders tanding the integrabil i ty 

o f  the quantum theories.  
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